My dear decision tree

Working definitions

 Observation: a data point consisting of attributes and a class label

- Very often also termed sample

- Sample (Singular): unfortunately very often used for two different things:
 - The complete set of all observations but also
 - One individual observation
- Samples (Plural): all available observations

Questionaire

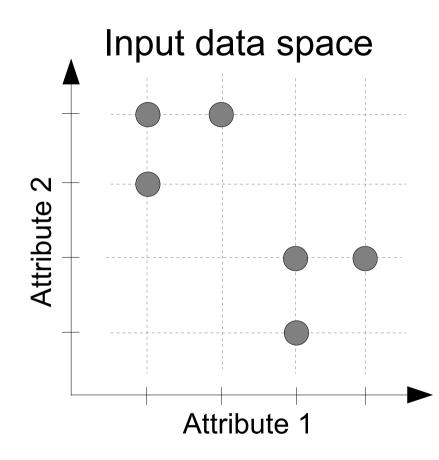
- Subjects answer a set of questions
- Most questions cannot be answered using number but sentences

- To make those answers comparable categories are introduced
- In most cases, the values of such categories cannot be ordered
 - They are nominal data

http://blog.mathsage.com/wp-content/uploads/2008/06/questionaire.jpg

Nominal attributes

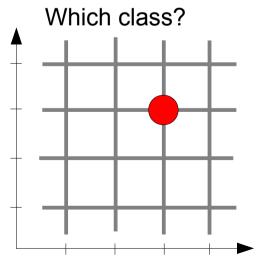
- Multi-dimensional
 - Attribute1= $\{a_{11}, a_{12}, a_{13}, a_{14}\}$
 - Attribute2= $\{a_{21}, a_{22}, a_{23}, a_{24}\}$
 - No natural order of a_{ii}
- Finit number of combinations
- Samples (e.g.)
 - s₁=[a₁₁,a₂₃]
 - s₂=[a₁₄,a₂₂,]
 - $s_3 = [a_{11}, a_{24}]$

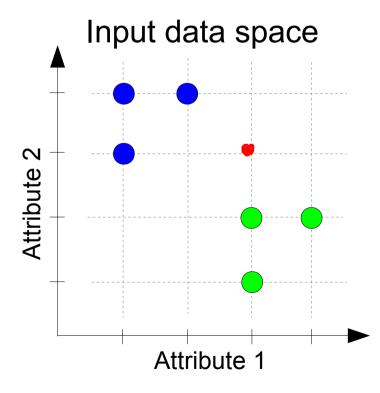


Edited by Foxit Reader Copyright(C) by Foxit Corporation,2005-2010 For Evaluation Only.

Questionaire based prediction

- A prediction class is assigned to each sample
 - Two classes
 - How the sample looks like (questions)
- Task: predict the class of an unseen sample

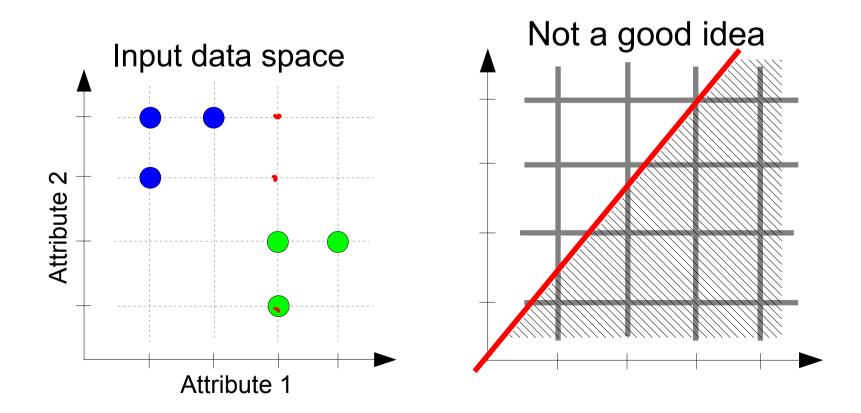




Edited by Foxit Reader Copyright(C) by Foxit Corporation,2005-2010 For Evaluation Only.

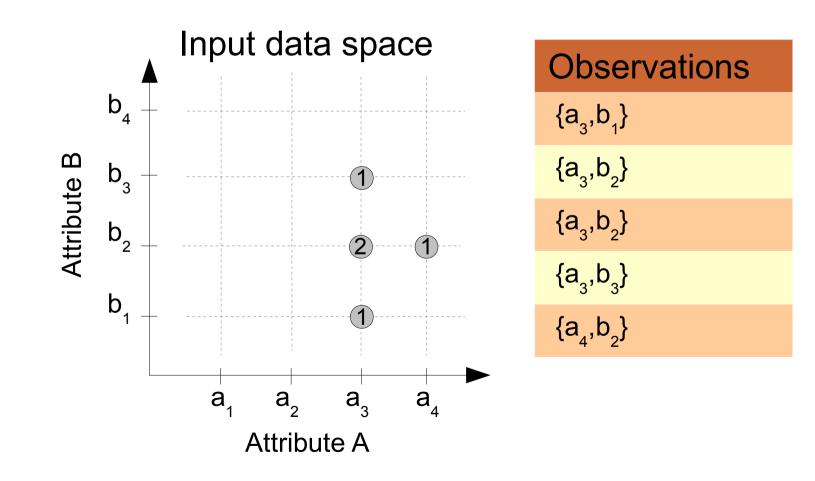
Questionaire based prediction

Linear separation of input data space is not applicable

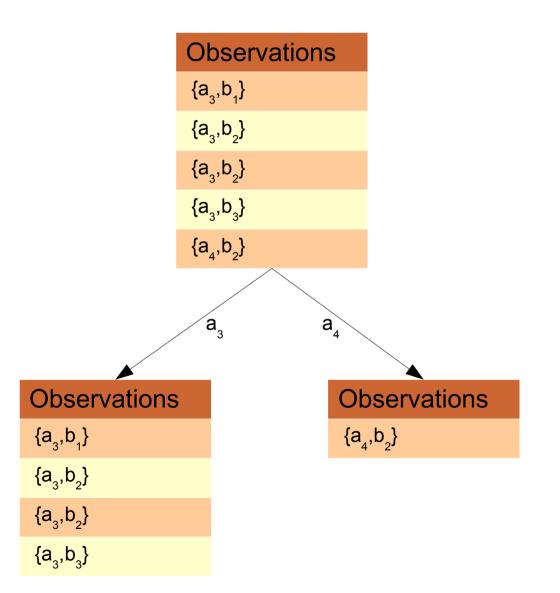


Separation of nominal input space

• As attributes only have a limited number of values, we can use those values to split

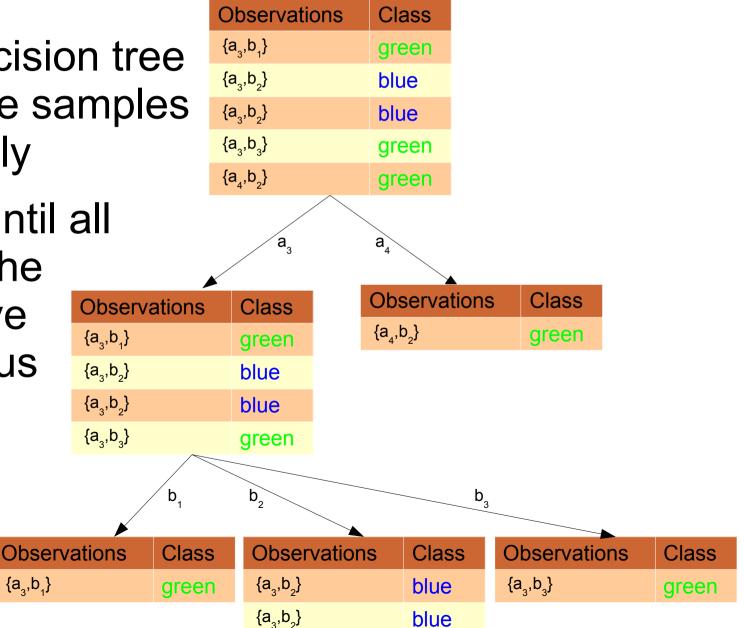


Splitting the samples using Attribute-Values



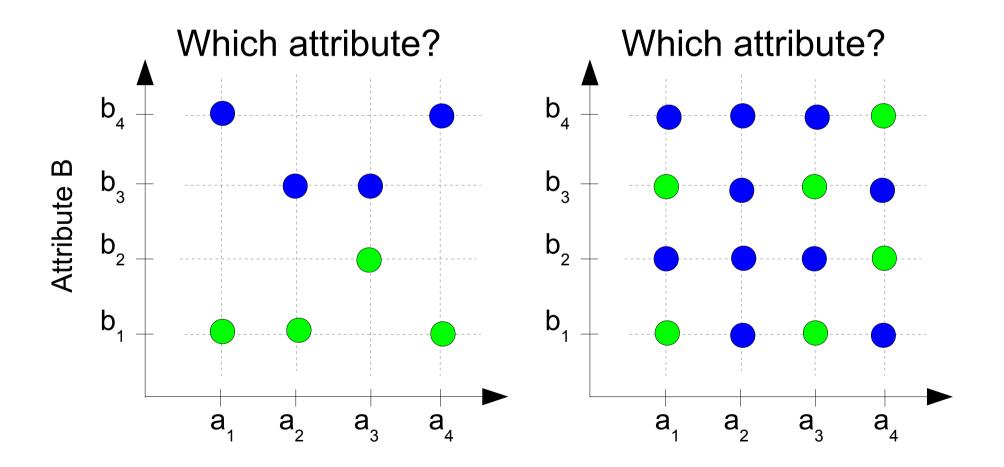
Prediction using nominal attributes

- Create a decision tree that splits the samples hierar-chically
- Split again until all samples in the subTree have homogeneous class labels



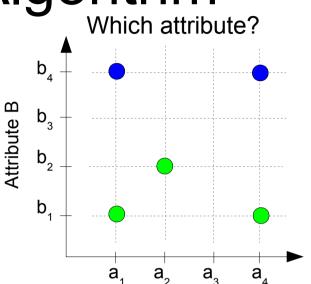
Wich attribute is best appropriate to separate the sample wrt to class

• Attribute A or B for splitting?



ID3 Algorithm

- Split sample using an attribute
 - Such as the Subsets are mostly identical in their class labels
- A split using A returns n_A subsets
 - n_A is the number of values of A
- Here: use B for splitting as it produces homogeneous class labels in subsets



Obervations			
Samples	Class		
{a ₁ ,b ₁ }	green		
{a ₁ ,b ₄ }	blue		
{a ₂ ,b ₂ }	green		
{a ₄ ,b ₁ }	green		
{a ₄ ,b ₄ }	blue		

Split using A		Split using B	
Samples	Class	Samples	Class
{a ₁ ,b ₁ }	green	{a ₁ ,b ₁ }	green
{a ₁ ,b ₄ }	blue	{a ₄ ,b ₁ }	green
Samples	Class	Samples	Class
{a ₂ ,b ₂ }	green	{a ₂ ,b ₂ }	green
Samples	Class	Samples	Class
{a ₄ ,b ₁ }	green	{a ₁ ,b ₄ }	blue
{a ₄ ,b ₄ }	blue	{a ₄ ,b ₄ }	blue

ID3 algorithm

• Idea:

- Use the increase of homogeneous class labels (also termed information gain) to decide which Attribute should be used for splitting the observations
- If the class labels are not yet homogeneous in the resulting subSets (also termed subTrees) split them again.. and again .. and again until the class labels are homogeneous
- Each split is a new branch and leaves "close" a path starting from the root (the root is where the first sample split was applied)
- The leaves are then used as class labels for predicting the class of new observations

Information Gain

- Compute the change of entropy when splitting the sample using Attribute A
 - S, the sample
 - A, the Attribute which is tested right now
 - n_A the number of values in the attribute
 - $-A_{i}$ the i-th value of Attribute A
 - P_{Ai} the number of samples with A=A_i divided by the number of all samples in the set
 - E(S) the entropy of set S regarding the class labels
 - S_{Ai} the subset of S with values A_i (all samples of S that have the value A_i for their attribute A

$$G(S, A) = E(S) - \sum_{i=1}^{n_A} p_{A_i} \cdot E(S_{A_i})$$

Information Gain

 $G(S, A) = E(S) - \sum p_{A_i} \cdot E(S_{A_i})$

 n_A

i = 1

Difference between entropy before split and entropy after split measures the increase of homogeneity considering the class labels

Entropy of S:

A measure of how homogeneously the class labels are distributed in Sample S before splitting Entropy of S after split by Attribute A:

A measure of how homogeneously the class labels are distributed in the subTrees, after the Sample S was split in n_A subTrees according to the values of Attribute A

Entropy of S_{Ai} :

A measure of how homogeneously the class labels are distributed in Sample ${\rm S}_{\rm Ai}$

ID3 algorithm

- ID3 (Examples, Target_Attribute, Attributes)
 - Create a root node for the tree
 - If all examples are positive, Return the single-node tree Root, with label = +.
 - If all examples are negative, Return the single-node tree Root, with label = -.
 - Otherwise Begin (to be continued on next slide)

ID3 algorithm continued

- A = The Attribute that best classifies examples.
 - Decision Tree attribute for Root = A.
 - For each possible value, v_i, of A,
 - Add a new tree branch below Root, corresponding to the test (selection) A = v_i.
 - Let Examples(v_i), be the subset of examples that have the value v_i for A
 - below this new branch add the subtree
 ID3 (Examples(v_i), Target_Attribute, Attributes {A})
- End
- Return Root

Edited by Foxit Reader Copyright(C) by Foxit Corporation,2005-2010 For Evaluation Only.

Practise

- New keyword: cell
- Create two samples with one attribute and one class
 - Ca 5-7 observations
 - Sample1: Attribute is highly correlated with class
 - Sample2: Attribute is not correlated with class label
- Create subsets (splitForAttributes.m) for both samples according to attribute
- Calculate the entropy of the respective subsets

Practise

- Create multidimensional sample (generateData)
- Use getInformationGainAtt to find out which attribute is most appropriate to split the sample
- Start ID3(data, level) algorithms
 - Data the supervised data (attributes encoded in natural numbers and class labels)
 - Level is just a marker to trigger the recursion depth (use level=1 at call from matlab command line)

Pruning

- Pruning (deutsch Gehölzschnitt)
- To avoid thousends of decision just cut the tree and generalize
- Can reduce the prediction error (over-fitting occurs as the tree contains to many decisions which may be driven by noise)

What happens with noisy data

- In real world data, it can happen that the classes differ in observations even if the attribute-values are 100% identical
 - {a1,b3,c2,green}
 - {a1,b3,c2,blue}
 - {a1,b3,c2,blue}
- Predict the major class and hope for the best