## Help a robot to navigate

After a robot has traveled a lot, it now wants to go home. It has no map and cannot ask anybody for directions. But, fortunately it has a device that tells the robot the current distance in meters to its home.

If the robot is at position ( $\mathrm{x}, \mathrm{y}$ ) the device returns the distance using the following formula

$$
\operatorname{dist}(x, y)=\sqrt{\left(\left(x-x_{H}\right)^{2}+\left(y-y_{H}\right)^{2}\right)}
$$

Use gradient descent to help the robot to come home. The robot starts at position (10,2), the home is at position $\left(\mathrm{x}_{\mathrm{H}}=5, \mathrm{y}_{\mathrm{H}}=5\right)$, the step size is $1, \Delta \mathrm{x}=0.1$. How many steps are required until the robot is at home (closer than 1 meter). Hint: at each iteration, update the x and the y position as well.

## Search space

Use brute force to compute and visualize the search space (from 0 to 15 m in x and y at a distance of 0.1 m ) for the above scenario.

