
  

It's all about features

● Feature selection
● Cluster analysis with k-means
● Prediction with k-nearest-neighbor



  

Some Data Processing Phases

● Data collection (raw Features)
● Feature computation
● Feature selection

http://historyofeconomics.files.wordpress.com/2008
/10/data-mining.jpg



  

Feature computation
● Increase the abstraction of features

● Use background/domain knowledge to construct 
features of higher value

● Examples
● Image Processing

– Insights into computation of hue and structure of 
ImageFeatureCreation and FeatureProcessor 

● Document Processing
– Insights into body-parser (tokenizer + String.contains)
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Feature Selection

● Remove redundant features
● Speeds up learning
● Enhance generalization capability

● Analyze feature according to redundancy
● Correlation between features

– Which features can be replaced?

● Analyze features according to predictive value
● Correlation with class attribute (continuous 

attribute)
● Attribute with least entropy (nominal attribute)

http://www.aldarin-electronics.com/images/market
%20analysis.jpg



  

Redundant features

● Given:
● 5 features (dogs)

● Question:
● Which of the features 

are just “boring” copies 
of other features and 
can be removed 
without fears?

http://www.finedogbreeds.com/mydalmation.jpg
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Pearson Correlation

● Average µ 
● Standard-deviation δ

ρXY= ∑
c=1

numberColumns (X c−μX )⋅(Y c−μY )

δX δY



  

Feature selection example 1

● Practice
● Load the data matrix from the material             

section (material.zip folder dataMatrix)
● This folder contains a matrix “mat” that has 12 

columns=attributes; the last column is the class 
attribute 

● Find out which features can be replaced
– use the corrcoeff-function to have an overview on the pair-

wise correlations (high correlations are close to 1 or -1)
– Visualize pairwise the dependent variables using the 

function “showCorrelation( mat,attr1,attr2 )”
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Predictive value of features

● Given:
● A training database with features and 1 class

– The features are continuous or ordinal
– The class is binary (“0”,”1”)

● Question:
● Which of the features should be used for prediction?
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Practice

● Find the feature with maximal predictive value
– Use the histogram function 

showClassHistogram(mat,attr) to decide which 
independent variable has the highest predictive power
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Feature Weightening
● An alternative to removal of features

● Why not completely remove features?

● Assign lower weights to unimportant features
● Example: scale one dimension and watch the 

difference in cluster outcome (after re-scaling)



  

2. Cluster analysis

● K-means-clustering
● Reduces the number of samples of input space to a 

few number of clusters

● Input (unsupervised learning)
● Samples from n-dimensional input space
● The number of cluster centers (also called 

prototypes p)

● Output
● p Cluster centers approximating the data
● Each data sample has a cluster assigned



  

K-means learning Step 1

● For each sample
● Compute the closest prototype
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K-means learning Step 2
● For each prototype

● compute the cluster center (gravity center of planets)
● Set the prototype to the cluster center position

● Goto Step 1 followed by Step 2 until steady state
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Practise K-means

● K-means in 2-D input space with 2,3,4 clusters
● Open folder kmeans from Material.zip

● data=generateData and draw the data
● class=kmeans(data,3);



  

Properties of k-means
● Bad

● Numbers of clusters required (this is often not 
known in advance)

● Hard to recognize what makes a cluster
● What happens with non-clustered data?
● Requires computation (p times s) of distance from

– Class prototypes (p) to
– Samples (s) 

● Good
● simple
● Works for any number of dimensions



  

Problem k-means

● The data clearly contains a simple rule but this 
is hard to find if the rule is not expressed as 
cluster

● Data “stripes”
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3.The simplest prediction model



  

K-nearest-neighbor

● In contrast to all other algorithms
● Does not create a model but uses the samples 

directly to make predictions
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Prediction algorithm

● Is based on distance 
measures
● Calculate the distance 

between new sample and 
all samples in the training 
set

● Uses the least distant 
samples to predict the 
class
● Majority vote
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Example with different k's

● Consider the k nearest neighbors and use their 
class labels to predict the class for x
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Practise

● Use the matlab folder k-NN from the 
materials.zip
● Use generateData to create supervised training 

samples with two independent attributes and a 
class label

● Call kNN(data,targetX,targetY) to see how the 
prediction changes dependent on parameter k



  

Properties of k-NN

● Case based not model based
● Or in other words: the samples are                       

their own model

● Is not prone to become outdated
● As soon as new training data arrives the prediction 

result can change
● Contrasting Model-based prediction which require 

to learn the model again as soon as the training set 
is updated

● Is computationally very expensive
● solution: sub-Sampling (next slide)
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Sub-Sampling

● Reduce the amount of samples by selecting 
samples randomly

● Try the subSample function to reduce the 
number of samples for prediction

● Load oddData, try kNN before and after Sub-
Sampling
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