Naïve Bayes Classifier

- A robust predictor that is based on historical knowledge
- Conditional independence
- The core of the predictor: Bayes law
- The naïve assumption to make live easier

Law of calculating total probability

- The total probability of A is computed by summing up the parital probilities of A at events B_{i}

$$
P(A)=\sum_{i=1}^{m} P\left(A \mid B_{i}\right) \cdot P\left(B_{i}\right)
$$

- Beispiel Wahrscheinlichkeit Lust auf Eiscreme zu haben
- An heißen Tagen: 90\%
- An warmen Tagen: 50\%
- An Kalten Tagen: 10\%
- Wie hoch ist die totale Wahrscheinlichkeit von "Lust auf Eiscreme" (heiße, warme \& kalte Tage sind gleichhäufig)

Conditional Dependence

If A depends on B

$$
P(A, B)=P(A \mid B) \cdot P(B)
$$

If independent

$$
P(A, B)=P(A) \cdot P(B)
$$

hence

$$
P(A \mid B)=P(A)
$$

Example Independence

- 2 Variables with Values
- Tag in
\{Mo,Di,Mi,Do,Fr,Sa,So\}
- Wetter in \{Sonnig,Regen\}
- A priori Probability
- $P($ Tag $=$ Mo $)=1 / 7$
- $P($ Wetter=Sonnig $)=1 / 2$
- Show that Tag is independent of Wetter P (Mo|Sonnig) $=\mathrm{P}$ (Mo)

Example Dependence

1/7
Show that $P(M o \mid$ Sonnig $) \neq P(M o)$

Naive Bayes Predition algorithm

- Predict class $\mathrm{C}=\left\{\mathrm{c}_{1}, \mathrm{c}_{2}\right\}$ for sample

$$
\mathrm{D}=\left[\mathrm{A}=\mathrm{a}_{1}, \mathrm{~B}=\mathrm{b}_{2}\right]
$$

- Count how many times of the training samples
- a_{1} and b_{2} occurred in c_{1}
- a_{1} and b_{2} occurred in c_{2}
- Take that class \hat{c} where a_{1} and b_{2} occurred more often $\hat{c}=\operatorname{argmax}_{c \in C} P(D \mid c)$

Tools to explain why its working

- Bayes law
- Multiplication rule

$$
P(c \mid D)=\frac{P(D \mid c) \cdot P(c)}{P(D)}
$$

$$
P(A \wedge B)=P(A \mid B) \cdot P(B)
$$

- Conditional probability $P(A \mid B)$

Another Sample to show Conditional Independence

- Attributes $A=\left\{a_{1}, a_{2}\right\} \quad B=\left\{b_{1}, b_{2}\right\}$
- Class label $\mathrm{C}=\left\{\mathrm{C}_{1}, \mathrm{C}_{2}\right\}$

		Attribute A	Attribute B	Attribute C
$\left(a_{1} b_{1} c_{1}\right)$	Sample 1	a_{1}	b_{1}	c_{1}
$\left(a_{1} b_{2} c_{1}\right) \quad\left(a_{2} b_{2} c_{1}\right)$	Sample 2	a_{2}	b_{1}	c_{1}
$\left(\mathrm{a}_{2} \mathrm{~b}_{1} \mathrm{c}_{1}\right)$	Sample 3	a_{1}	b_{2}	c_{1}
	Sample 4	a_{2}	b_{2}	c_{1}
$\left(\mathrm{a}_{2} \mathrm{~b}_{3} \mathrm{c}_{2}\right)$	c_{2}
$\left(a_{3} b_{1} c_{2}\right)$	c_{2}
$\left(\mathrm{a}_{1} \mathrm{~b}_{2} \mathrm{c}_{2}\right)$	c_{2}

Selection

- Select only samples with $\mathrm{C}=\mathrm{c}_{1}$

$a_{1} \& b_{1}$ independent given c_{1}

Samples

	Attribute A	Attribute B	Attribute C
Sample 1	a_{1}	$\mathrm{~b}_{1}$	c_{1}
Sample 2	a_{2}	$\mathrm{~b}_{1}$	c_{1}
Sample 3	a_{1}	$\mathrm{~b}_{2}$	c_{1}
Sample 4	a_{2}	$\mathrm{~b}_{2}$	c_{1}

Excerpt formal description

- $P\left(a_{1} b_{2} \mid c_{1}\right)=0.25$
- $P\left(a_{1} \mid c_{1}\right)=0.5$
- $P\left(b_{2} \mid c_{1}\right)=0.5$

Statistics

$a_{1} b_{1}$	Absolute Frequency of samples with $\mathbf{C}=c_{1}$	Relative Frequency of samples with $\mathbf{C}=\mathrm{c}_{1}$
$\mathrm{a}_{2} \mathrm{~b}_{1}$	1	$1 / 4$
$a_{1} b_{2}$	1	$1 / 4$
$a_{2} b_{2}$	1	$1 / 4$

Absolute Frequency of samples with $\mathbf{C}=\mathrm{c}_{1}$	Relative Frequency of samples with $\mathrm{C}=\mathrm{c}_{1}$	
a_{1}	2	$1 / 2$
a_{2}	2	$1 / 2$

Absolute Frequency of Relative Frequency of samples with $\mathbf{C}=\mathrm{C}_{1} \quad$ samples with $\mathbf{C}=$

b_{1}	2	$1 / 2$
$\mathrm{~b}_{2}$	2	$1 / 2$

Conditional Independence

- $P\left(a_{1} b_{2} \mid c_{1}\right)=0.25$
- $P\left(a_{1} \mid c_{1}\right)=0.5$
- $P\left(b_{2} \mid c_{1}\right)=0.5$
- Simplification $P(A, B)$ to $P(A) \cdot P(B)$ allowed if
- $P\left(a_{i}, b_{k}\right)=P\left(a_{i}\right) \cdot P\left(b_{k}\right)$ is true for all $a_{i} \in A$ and $b_{k} \in B$
- If Attribute A and B are conditional independent than
- The multiplication rule
- is simplified to

$$
\begin{aligned}
& P(A \wedge B)=P(A \mid B) \cdot P(B) \\
& P(A \wedge B)=P(A) \cdot P(B)
\end{aligned}
$$

Prediction using naïve Bayes classifier

- Input
- Supervised Training samples
- Discrete independent attributes (nominal or ordinal) $D \epsilon$ [A x B]
- Discrete class label $C \in\left\{\mathrm{c}_{1}, \mathrm{c}_{2}\right\}$
- an unseen sample that is to be predicted (only the independent attributes D are known)
- Output
- The most likely class $\hat{c} \in \mathrm{C}$ is predicted for the unseen sample

Example

- Domain: Credit Worthiness
- Data sample D consists of two variables
- Income=\{low,middle,high\}
- furtherCredits=\{none, one, many\}
- Class label C
- Creditworthy=\{no (not credit worthy), yes (credit worthy)\}
- e.g. Supervised data

D C

- [Income=low, furtherCredits=many, Creditworthy=no]
- [Income=high, furtherCredits=one, Creditworthy=yes]
- e.g. Unseen sample
- D= [Income=low, furtherCredits=one]

Naïve Bayes

- Find class c with highest probability given the data D

$$
\hat{c}=\operatorname{argmax}_{c \in C} P(c \mid D)
$$

- Apply Bayes law

$$
\hat{c}=\operatorname{argmax}_{c \in C} \frac{P(D \mid c) \cdot P(c)}{P(D)}
$$

- Skip P(D) as ineffective constant

$$
\hat{c}=\operatorname{argmax}_{c \in C} P(D \mid c) \cdot P(c)
$$

- Skip $\mathrm{P}(\mathrm{c})$ assuming $\hat{c}=\operatorname{argmax}_{c \in C} P(D \mid c)$ homogeneously-distributed classes
- Maximum likelihood hypothesis

Working Prediction Example

- Supervised database

$$
\hat{c}=\operatorname{argmax}_{c \in C} P(D \mid c)
$$

- [Income=low, furtherCredits=many, Creditworthy=no]
- [Income=middle, furtherCredits=many, Creditworthy=no]
- [Income=middle, furtherCredits=one, Creditworthy=no]
- [Income=high, furtherCredits=one, Creditworthy=yes]
- [Income=high, furtherCredits=none, Creditworthy=yes]
- Unseen sample for which class is to be predicted
- $\mathrm{D}=$ [Income=high, furtherCredits=one]
- Compute probability $\hat{c}=\operatorname{argmax}_{c \in C} P([A, B] \mid c)$
- For class "no": P([Income=high, furtherCredits=one]| no)
- For class "yes": P([Income=high, furtherCredits=one] | yes)

Not working Prediction Example

- Supervised database (the same database)
- [Income=low, furtherCredits=many, Creditworthy=no]
- [Income=middle, furtherCredits=many, Creditworthy=no]
- [Income=middle, furtherCredits=one, Creditworthy=no]
- [Income=high, furtherCredits=one, Creditworthy=yes]
- [Income=high, furtherCredits=none, Creditworthy=yes]
- Unseen sample (is now different)
- $\mathrm{D}=$ [Income=low, furtherCredits=one]
- Computing the probability is not possible
- P([Income=low, furtherCredits=one]| no) not found
- P([Income=low, furtherCredits=one] | yes) not found

Sparsity Problem

$$
\hat{c}=\operatorname{argmax}_{c \in C} P([A, B] \mid c)
$$

- Most often the Database is sparse
- The combination of attributes that you need for your unseen sample is either very rare or not existent in the database
- Solution
- Make the naïve assumption that the independent Attributes are conditionally independent

$$
\begin{aligned}
& \hat{c}=\operatorname{argmax}_{c \in C} P([A, B] \mid c) \text { is replaced by } \\
& \hat{c}=\operatorname{argmax}_{c \in C}(P(A \mid c) \cdot P(B \mid c))
\end{aligned}
$$

Prediction Example

- Supervised database $\quad \hat{c}=\operatorname{argmax}_{c \in C}(P(A \mid c) \cdot P(B \mid c))$
- [Income=low, furtherCredits=many, Creditworthy=no]
- [Income=middle, furtherCredits=many, Creditworthy=no]
- [Income=middle, furtherCredits=one, Creditworthy=no]
- [Income=high, furtherCredits=one, Creditworthy=yes]
- [Income=high, furtherCredits=none, Creditworthy=yes]
- Unseen sample for which class is to be predicted
- $\mathrm{D}=$ [Income=low, furtherCredits=one]
- Compute probability
- "no": $P($ Income=low | no) * $P($ furtherCredits=one | no $)=1 / 3$ * 1/3
- "yes": P(Income=low | yes) * P(furtherCredits=one | yes)=0 * $1 / 2$

Properties of naïve Bayes

- Output is the "best" class \hat{c} and an evaluation value as well (likelihood of \hat{c} of being the correct class)
- No model required
- With each new training sample the likelihood is updated dynamically
- Easy and simple but very robust in production mode

