
  

Naïve Bayes Classifier

● A robust predictor that is based on historical 
knowledge

● Conditional independence
● The core of the predictor: Bayes law
● The naïve assumption to make live easier



Law of calculating total probability

● The total probability of A is computed by summing up 
the parital probilities of A at events B

i

● Beispiel Wahrscheinlichkeit Lust auf Eiscreme zu 
haben
● An heißen Tagen: 90%
● An warmen Tagen: 50%
● An Kalten Tagen: 10%

● Wie hoch ist die totale Wahrscheinlichkeit von "Lust 
auf Eiscreme" (heiße, warme & kalte Tage sind gleichhäufig)

P (A)=∑
i=1

m

P(A∣B i)⋅P(B i)



Conditional Dependence

If A depends on B If independent

hence

P (A , B)=P (A∣B)⋅P (B) P (A , B)=P (A)⋅P (B)

P (A∣B)=P (A)



Example Independence

● 2 Variables with 
Values
● Tag in 

{Mo,Di,Mi,Do,Fr,Sa,So}
● Wetter in 

{Sonnig,Regen}

● A priori Probability
● P(Tag=Mo)=1/7
● P(Wetter=Sonnig)=1/2

● Show that Tag is 
independent of Wetter 
P(Mo|Sonnig)=P(Mo)

Mo Di Mi Do Fr Sa So

Sonne

Regen

complete
Probility
Space

Tobias
Stift

Tobias
Rechteck



Example Dependence

Show that      P(Mo|Sonnig)≠P(Mo)

Mo Di Mi Do Fr Sa So

Sonne

Regen
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Naive Bayes Predition algorithm

● Predict class C={c
1
, c

2
} for sample 

D=[A=a
1
,B=b

2
]

● Count how many times of the training samples
● a

1
 and b

2
 occurred in c

1

● a
1
 and b

2
 occurred in c

2

● Take that class ĉ where a
1
 and b

2
 occurred more 

often c=argmaxc∈CP D |c



  

Tools to explain why its working

● Bayes law
● Multiplication rule
● Conditional probability

P A∧B=P A |B⋅P B

Pc |D=
P D |c⋅Pc

P D

P A |B



  

Another Sample to show Conditional 
Independence

● Attributes A={a
1
,a

2
} B={b

1
,b

2
}

● Class label C={c
1
,c

2
}
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Selection

● Select only samples with C=c
1
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2
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b

1 
c

2
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c

2
)
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a
1
 & b

1
 independent given c

1

● P(a
1 
b

2 
| c

1
)=0.25

● P(a
1 
| c

1
)=0.5

● P(b
2 
| c

1
)=0.5

StatisticsSamples

Excerpt formal description

Absolute Frequency of 

samples with C=c
1

Relative Frequency of 

samples with C=c
1
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1 
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b

1
1 1/4

a
1 
b

2
1 1/4

a
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b

2
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1
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1

a
1

2 1/2

a
2
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1
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1
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b
2
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Conditional Independence

● P(a
1 
b

2 
| c

1
)=0.25

● P(a
1 
| c

1
)=0.5

● P(b
2 
| c

1
)=0.5

● Simplification P(A,B)  to  P(A) · P(B) allowed if 

● P(a
i
,b

k
)=P(a

i
) · P(b

k
) is true for all a

i
 Є A and b

k
 Є B 

● If Attribute A and B are conditional independent than

● The multiplication rule
● is simplified to 

P A∧B=P A |B⋅P B
P A∧B=P A⋅P B



  

Prediction using naïve Bayes 
classifier

● Input
● Supervised Training samples

– Discrete independent attributes (nominal or ordinal) D Є 

[A x B]  

– Discrete class label C Є {c
1
,c

2
}

● an unseen sample that is to be predicted (only the 
independent attributes D are known)

● Output
● The most likely class ĉ Є C is predicted for the 

unseen sample



  

Example
● Domain: Credit Worthiness

● Data sample D consists of two variables
– Income={low,middle,high}
– furtherCredits={none, one, many}

● Class label C
– Creditworthy={no (not credit worthy), yes (credit worthy)}

● e.g. Supervised data
– [Income=low, furtherCredits=many, Creditworthy=no]
– [Income=high, furtherCredits=one, Creditworthy=yes]

● e.g. Unseen sample
– D= [Income=low, furtherCredits=one]

D C



  

Naïve Bayes
● Find class c with highest probability given the 

data D

● Apply Bayes law

● Skip P(D) as                                         
ineffective constant

● Skip P(c) assuming                                
homogeneously-distributed classes
● Maximum likelihood hypothesis

c=argmax c∈CP c |D

c=argmaxc∈C
PD |c⋅P c

P D

c=argmaxc∈CP D |c⋅Pc 

c=argmaxc∈CP D |c



  

Working Prediction Example

● Supervised database
● [Income=low, furtherCredits=many, Creditworthy=no]
● [Income=middle, furtherCredits=many, Creditworthy=no]
● [Income=middle, furtherCredits=one, Creditworthy=no]
● [Income=high, furtherCredits=one, Creditworthy=yes]
● [Income=high, furtherCredits=none, Creditworthy=yes]

● Unseen sample for which class is to be predicted

● D= [Income=high, furtherCredits=one]
● Compute probability

– For class “no”: P( [Income=high, furtherCredits=one] | no)
– For class “yes”: P( [Income=high, furtherCredits=one] | yes)

c=argmaxc∈CP D |c

c=argmaxc∈CP [ A , B] |c 



  

Not working Prediction Example

● Supervised database (the same database)
● [Income=low, furtherCredits=many, Creditworthy=no]
● [Income=middle, furtherCredits=many, Creditworthy=no]
● [Income=middle, furtherCredits=one, Creditworthy=no]
● [Income=high, furtherCredits=one, Creditworthy=yes]
● [Income=high, furtherCredits=none, Creditworthy=yes]

● Unseen sample (is now different)

● D= [Income=low, furtherCredits=one]
● Computing the probability is not possible

– P( [Income=low, furtherCredits=one] | no) not found
– P( [Income=low, furtherCredits=one] | yes) not found



  

Sparsity Problem

● Most often the Database is sparse
● The combination of attributes that you need for your 

unseen sample is either very rare or not existent in 
the database

● Solution
● Make the naïve assumption that the independent 

Attributes are conditionally independent                    
   

c=argmaxc∈CP [ A , B] |c 

c=argmaxc∈CP [ A , B] |c 

c=argmaxc∈C P A |c⋅PB |c

is replaced by



  

Prediction Example
● Supervised database

● [Income=low, furtherCredits=many, Creditworthy=no]
● [Income=middle, furtherCredits=many, Creditworthy=no]
● [Income=middle, furtherCredits=one, Creditworthy=no]
● [Income=high, furtherCredits=one, Creditworthy=yes]
● [Income=high, furtherCredits=none, Creditworthy=yes]

● Unseen sample for which class is to be predicted

● D= [Income=low, furtherCredits=one]
● Compute probability

– “no”: P( Income=low | no) * P( furtherCredits=one | no)=1/3 * 1/3

– “yes”: P( Income=low | yes) * P( furtherCredits=one | yes)= 0 * 1/2 

c=argmaxc∈C P A |c⋅PB |c



  

Properties of naïve Bayes

● Output is the “best” class ĉ and an evaluation 
value as well (likelihood of ĉ of being the correct 
class)

● No model required
● With each new training sample the likelihood is 

updated dynamically
● Easy and simple but very robust in production mode
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