Naïve Bayes Classifier

- A robust predictor that is based on historical knowledge
- Conditional independence
- The core of the predictor: Bayes law
- The naïve assumption to make live easier

Law of calculating total probability

 The total probability of A is computed by summing up the parital probilities of A at events B_i

$$P(A) = \sum_{i=1}^{m} P(A|B_i) \cdot P(B_i)$$

- Beispiel Wahrscheinlichkeit Lust auf Eiscreme zu haben
 - An heißen Tagen: 90%
 - An warmen Tagen: 50%
 - An Kalten Tagen: 10%
- Wie hoch ist die totale Wahrscheinlichkeit von "Lust auf Eiscreme" (heiße, warme & kalte Tage sind gleichhäufig)

Conditional Dependence

If A depends on B

If independent

$$P(A,B)=P(A|B)\cdot P(B)$$

$$P(A,B)=P(A)\cdot P(B)$$

hence

$$P(A|B)=P(A)$$

Example Independence

- 2 Variables with Values
 - Tag in {Mo,Di,Mi,Do,Fr,Sa,So}
 - Wetter in {Sonnig,Regen}

- A priori Probability
 - P(Tag=Mo)=1/7_
 - P(Wetter=Sonnig)=1/2
- Show that Tag is independent of Wetter P(Mo|Sonnig)=P(Mo)

Example Dependence

2/7 1/7

Show that P(Mo|Sonnig)≠P(Mo)

Naive Bayes Predition algorithm

- Predict class C={c₁, c₂} for sample
 D=[A=a₁,B=b₂]
- Count how many times of the training samples
 - a₁ and b₂ occurred in c₁
 - a₁ and b₂ occurred in c₂
 - Take that class \hat{c} where a_1 and b_2 occurred more often $\hat{c} = argmax_{c \in C} P(D|c)$

Tools to explain why its working

$$P(c|D) = \frac{P(D|c) \cdot P(c)}{P(D)}$$

$$P(A \wedge B) = P(A|B) \cdot P(B)$$

• Conditional probability P(A|B)

Another Sample to show Conditional Independence

- Attributes $A = \{a_1, a_2\} B = \{b_1, b_2\}$
- Class label C={c₁,c₂}

	Attribute A	Attribute B	Attribute C
Sample 1	a ₁	b ₁	C ₁
Sample 2	a_2	b ₁	C ₁
Sample 3	a ₁	b_2	C ₁
Sample 4	$a_{\scriptscriptstyle 2}$	b_2	C ₁
			C ₂
•••		•••	$\mathbf{c}_{_{2}}$
			C ₂

Selection

Select only samples with C=c₁

	Attribute A	Attribute B	Attribute C
Sample 1	a ₁	b ₁	C ₁
Sample 2	$a_{\scriptscriptstyle 2}$	b ₁	c ₁
Sample 3	a ₁	b ₂	C ₁
Sample 4	$a_{\scriptscriptstyle 2}$	b_2	c ₁

a₁ & b₁ independent given c₁

Samples

	Attribute A	Attribute B	Attribute C
Sample 1	a ₁	b ₁	C ₁
Sample 2	a_2	b ₁	C ₁
Sample 3	a ₁	b ₂	C ₁
Sample 4	a_2	b ₂	C ₁

Excerpt formal description

- $P(a_1b_2|c_1)=0.25$
- $P(a_1 | c_1) = 0.5$
- $P(b_2 | c_1) = 0.5$

Statistics

	Absolute Frequency of samples with C=	Relative Frequency of samples with C=
a ₁ b ₁	1	1/4
$a_2^{}b_1^{}$	1	1/4
$a_1 b_2$	1	1/4
$a_2^{}b_2^{}$	1	1/4

	Absolute Frequency of samples with C=	Relative Frequency of samples with C=c
a ₁	2	1/2
$a_{\scriptscriptstyle 2}$	2	1/2

	Absolute Frequency of samples with C=	Relative Frequency of samples with C=
b ₁	2	1/2
b_2	2	1/2

Conditional Independence

- $P(a_1b_2|c_1)=0.25$
- $P(a_1 | c_1) = 0.5$
- $P(b_2 | c_1) = 0.5$

- Simplification P(A,B) to P(A) · P(B) allowed if
 - P(a_i,b_k)=P(a_i)
 P(b_k) is true for all a_i ∈ A and b_k ∈ B
- If Attribute A and B are conditional independent than
 - The multiplication rule $P(A \land B) = P(A \mid B) \cdot P(B)$
 - is simplified to $P(A \land B) = P(A) \cdot P(B)$

Prediction using naïve Bayes classifier

- Input
 - Supervised Training samples
 - Discrete independent attributes (nominal or ordinal) D ε
 [A x B]
 - Discrete class label C ∈ {c₁,c₂}
 - an unseen sample that is to be predicted (only the independent attributes D are known)
- Output
 - The most likely class ĉ ∈ C is predicted for the unseen sample

Example

- Domain: Credit Worthiness
 - Data sample D consists of two variables
 - Income={low,middle,high}
 - furtherCredits={none, one, many}
 - Class label C
 - Creditworthy={no (not credit worthy), yes (credit worthy)}
 - e.g. Supervised data
 - [Income=low, furtherCredits=many, Creditworthy=no]
 - [Income=high, furtherCredits=one, Creditworthy=yes]
 - e.g. Unseen sample
 - D= [Income=low, furtherCredits=one]

Naïve Bayes

• Find class c with highest probability given the data D $\hat{c} = argmax_{c \in C} P(c|D)$

Apply Bayes law

$$\hat{c} = argmax_{c \in C} \frac{P(D|c) \cdot P(c)}{P(D)}$$

 Skip P(D) as ineffective constant

$$\hat{c} = argmax_{c \in C} P(D|c) \cdot P(c)$$

- Skip P(c) assuming $\hat{c} = argmax_{c \in C} P(D|c)$ homogeneously-distributed classes
 - Maximum likelihood hypothesis

Working Prediction Example

$$\hat{c} = argmax_{c \in C} P(D|c)$$

- Supervised database
 - [Income=low, furtherCredits=many, Creditworthy=no]
 - [Income=middle, furtherCredits=many, Creditworthy=no]
 - [Income=middle, furtherCredits=one, Creditworthy=no]
 - [Income=high, furtherCredits=one, Creditworthy=yes]
 - [Income=high, furtherCredits=none, Creditworthy=yes]
- Unseen sample for which class is to be predicted
 - D= [Income=high, furtherCredits=one]
 - Compute probability

$$\hat{c} = argmax_{c \in C} P([A, B]|c)$$

- For class "no": P([Income=high, furtherCredits=one] | no)
- For class "yes": P([Income=high, furtherCredits=one] | yes)

Not working Prediction Example

- Supervised database (the same database)
 - [Income=low, furtherCredits=many, Creditworthy=no]
 - [Income=middle, furtherCredits=many, Creditworthy=no]
 - [Income=middle, furtherCredits=one, Creditworthy=no]
 - [Income=high, furtherCredits=one, Creditworthy=yes]
 - [Income=high, furtherCredits=none, Creditworthy=yes]
- Unseen sample (is now different)
 - D= [Income=low, furtherCredits=one]
 - Computing the probability is not possible
 - P([Income=low, furtherCredits=one] | no) not found
 - P([Income=low, furtherCredits=one] | yes) not found

Sparsity Problem

$$\hat{c} = argmax_{c \in C} P([A, B]|c)$$

- Most often the Database is sparse
 - The combination of attributes that you need for your unseen sample is either very rare or not existent in the database
- Solution
 - Make the naïve assumption that the independent Attributes are conditionally independent

$$\hat{c} = argmax_{c \in C} P([A, B]|c)$$
 is replaced by

$$\hat{c} = argmax_{c \in C} (P(A|c) \cdot P(B|c))$$

Prediction Example

Supervised database

$$\hat{c} = argmax_{c \in C} (P(A|c) \cdot P(B|c))$$

- [Income=low, furtherCredits=many, Creditworthy=no]
- [Income=middle, furtherCredits=many, Creditworthy=no]
- [Income=middle, furtherCredits=one, Creditworthy=no]
- [Income=high, furtherCredits=one, Creditworthy=yes]
- [Income=high, furtherCredits=none, Creditworthy=yes]
- Unseen sample for which class is to be predicted
 - D= [Income=low, furtherCredits=one]
 - Compute probability
 - "no": P(Income=low | no) * P(furtherCredits=one | no)=1/3 * 1/3
 - "yes": P(Income=low | yes) * P(furtherCredits=one | yes)= 0 * 1/2

Properties of naïve Bayes

- Output is the "best" class ĉ and an evaluation value as well (likelihood of ĉ of being the correct class)
- No model required
 - With each new training sample the likelihood is updated dynamically
 - Easy and simple but very robust in production mode