Machine Learning in Robotics

Robots in use

- Today Robots are used
 - Mainly in telematic use for
 - Open space exploration (Probes Voyager)
 - Industrial production (Automobile industry)
 - Under water work (e.g. Deep-Water-Oil-Crisis)
 - Reconnaissance, monitoring hostile places and (killing) people (it's a shame for all people who invested their life creating robots for peaceful use)
 - Rarely in autonomous use (requires machine Learning)
 - Autonomous vacuum cleaner (Staubsauger)

Robocup

- Was introduced after the first challenge create a program that can win in chess - was passed
- New challenge: beat the worldchampionship masters with a robotic team
 - In comparison to chess
 - No precisely defined states and operations
 - No two situations are exactly identical [Pfeifer, Scheier 99]
 - Is aimed to be solved until 2050

Robocup Leagues

- Small-Size
- Mid-Size
- AIBO
- Humanoid
- Rescue
- Dance
- Simulation

http://124.146.198.189/Press/Seatt le/junior_dance.jpg

robocup-us.org/Old/robocup-2007/images/fourlegged.jpg

ttp://www.cs.cmu.edu/~robosocce nage-gallery/small/ssl_game.jpg

Equipment

Omnivision

Ultrasonic Sensor http://shop.nxt-roboter.de/

 Laser Scanner

Bumper

• LCD-Camera

http://www.nubot.com.cn/image/2512.jpg

http://blog-imgs-27.fc2.com/n/9/a/n9a/OMNIvision.jpg

http://www.aisbit.de/robocup/ima ges/hardware/img5.jpg

http://www.dlr.de/jobs/en/Portaldata/ 47/Resources//sick.jpg

Robotics for your home

- AIBO (discontinued)
 - 18 motors, 3 per leg
 - Two stero microphones
 - Two heat sensors
 - Infra-red finder
 - 4 accelaration sensors
- QRIO
 - Stereo vision
 - Speech and face recognition
 - 5 finger manipulators, walking biped

Localization using Odometry

- Determine the robots position without knowing it
- Use sensoric inputs from wheels
 - From revolution of two wheels the distance can be measured
- Increasing uncertainty
 - Because of schlupf
 - Friction
 - noise
- Must be "guided" using other sensor-readings or domain knowledge

Obstacle Avoidance

Navigation and Potential fields

- Navigation exploting Robocode
 - Sensing and Knowledge about environment
 - Navigation Map building

Robocode "Test"-Area

Potential Field with Obstacles and Target

Artificial Life

- FrameStikcs
 - mechanical struc-tures (bodies) and control systems (brains) of creatures are modeled
 - Are discribed by genotype (/*4*/CLL,aiLLRMc<f<rX>#MIF>X >,iRRLFmLc<c<sss<<X>N>L<X# 2>><XwLw>FLLIL<XM>srXw>Xr E>LAiXCw)
 - Development by means of evolution

Braitenberg vehicles

- Very simple rules create"intelligent" behavior
- Behavior without needing a model
 - No creature uses a model for defining actions
 - Creates actions directly from observed environment
- BraitenbergSim.jar from the material section

