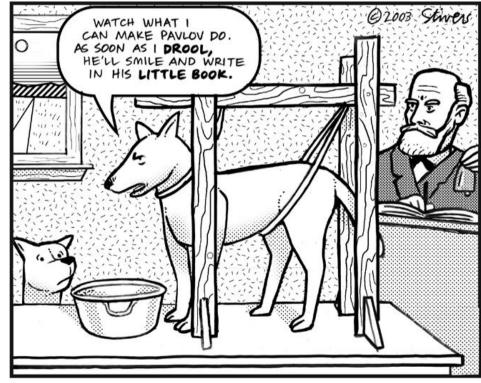
Reinforcement Learning

Pavlocs experiments on conditioning

- Operational conditioning
- Pavlov reinforced the connection between salvation and ringing a bell using a food stimulus
 - At the end the dog drooled just on ringing the bell without being exposed to any food



http://api.ning.com/files/YwzKAeVaunUIhGHXAAMUzA*L4WUBommkdp6pOLnWq0s_/ag eofthesage.org.gif

Q-learning

- A reinforcement learning variant
- Does not require a world model to exist
- Requires only direct feedback from the environment after an action was executed

Reward I

- Immediate reward
 - the reward (positive or negative) is the "feed back" directly after the action was executed
 - Is optimal for learning as you immediately know if your action was a good or bad
 - Domains with immediate rewards are rare since actions take time to affect the environment

Reward II

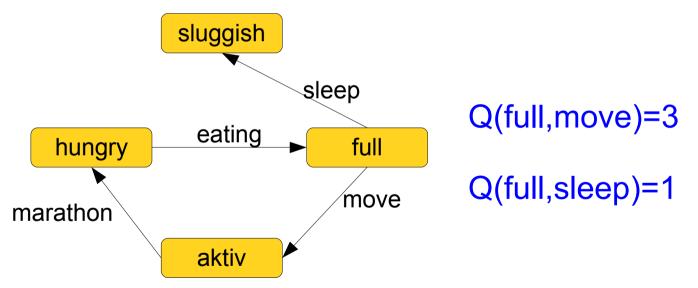
- Delayed reward
 - A reward that is undisclosed to you only after a sequence of actions
 - This kind of reward is delayed such that you never know which of your actions was good or bad

Terms and Definitions

- State: is the actual state s, of the agent
- Action: a potential action a that brings the agent into a new state s_{t+1}
- Reward: is received in state s_{t+1} after Action a was applied

Terms and Definitions

- Policy Q is a mapping from states to actions Q(s,a)
- Q stores the expected reward after Action a is applied in State s



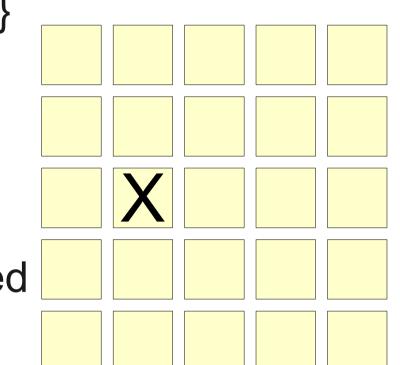
 Goal: find a policy Q such that the long-term reward is maximized

Q-Learning example

Actions A={left,right,up,down}

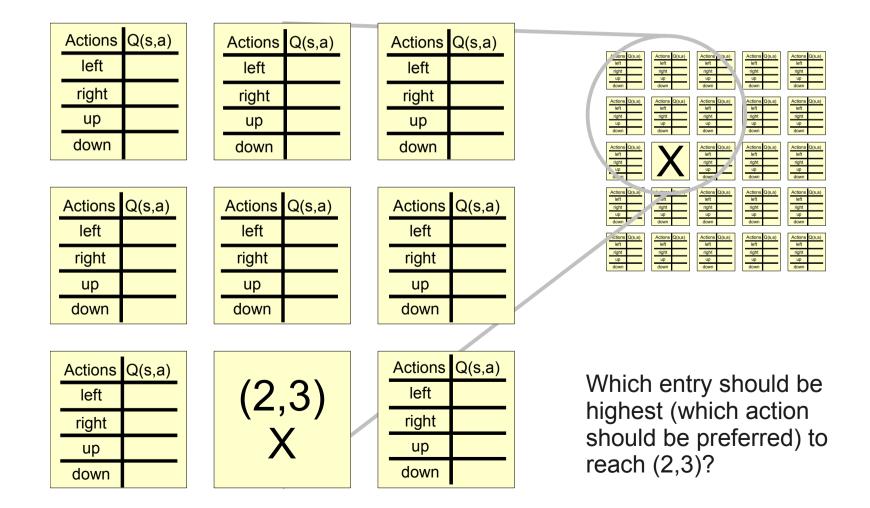
• States S are 25 "places"

- An immediate reward is payed at field (2,3)
- Delayed Reward
 - If we start at (2,1) and go down two fields to (2,3) we must transform the immediate reward at state (2,1) into a delayed reward to "remember" which way we have to go when starting from (2,1) the next time



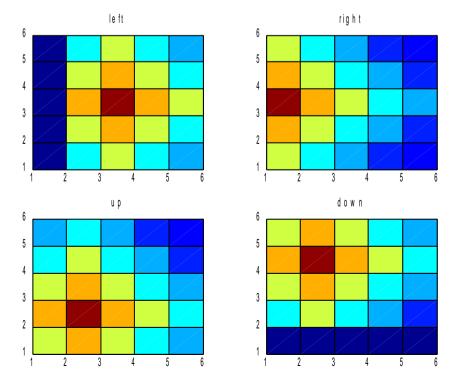
Q-Learning example

• Find a Q(S,A) such that the reward is maximized



Q-Learning example

- Use **Qlearning.m** example from the Material Section to see the Q(S,A) crowding
- In each iteration the algorithm updates the Q-Value for each action in each state
 - This can be intepreted as the robot can "try" all possible actions in all possible states



Q-Learning Algorithm

• Update formula using a discount factor $0 \le \gamma \le 1$

The expected benefit if Action a_t would be executed in State s_t The maximal reward we can expect in the new $State_{t+1}$

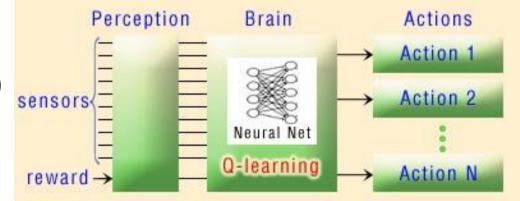
$$\overbrace{Q(s_t, a_t)}^{t} = r_{t+1} + \gamma \cdot \overbrace{max_{a \in A} Q(s_{t+1}, a)}^{t}$$

The reward that awaits us after Action a_t was executed in s_t

- For all states and all actions, update the formula until no values change any more
- Use the Policy Q to execute the optimal action a_t given the actual State s_t

Extension of Standard Q-Learning

- Needs to discretize the world (into state) and its manipulations (into actions)
 - Solution: Q-Learning with continuous states and actions
- The Table Q(S,A) can have many entries and could become a mess
 - Use a function that "approximates" Q(S,A)
 - e.g. A neural net



http://elsy.gdan.pl/images/stories/how_works/idea.jpg

Q-Learning Framework

- Example in QLearning folder of Materials.zip
 - Try qApollo.jar to see a robot learning to fly a landing capsule with reinforcement learning
 - For this domain it is a good choice to use a simulator to make the first steps!

