
  

Reinforcement Learning



  

Pavlocs experiments on 
conditioning

● Operational conditioning
● Pavlov reinforced the 

connection between 
salvation and ringing a 
bell using a food 
stimulus
● At the end the dog 

drooled just on ringing 
the bell without being 
exposed to any food

http://api.ning.com/files/YwzKAeVaunUIhGHXAAMUzA*L4WUBommkdp6pOLnWq0s_/ag
eofthesage.org.gif



  

Q-learning

● A reinforcement learning variant
● Does not require a world model to exist
● Requires only direct feedback from the 

environment after an action was executed



  

Reward I

● Immediate reward
● the reward (positive or negative) is the “feed back” 

directly after the action was executed
● Is optimal for learning as you immediately know if 

your action was a good or bad
● Domains with                                             

immediate rewards are                                        
rare since actions take                                         
time to affect the                                     
environment
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Reward II

● Delayed reward
● A reward that is undisclosed to you only after a 

sequence of actions
● This kind of reward is delayed such that you never 

know which of your actions was good or bad
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Terms and Definitions

● State: is the actual state s
t
 of the agent

● Action: a potential action a that brings the agent into 
a new state s

t+1

● Reward: is received in state s
t+1

 after Action a was 
applied
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Terms and Definitions

● Policy Q is a mapping from states to actions Q(s,a) 
● Q stores the expected reward after Action a is 

applied in State s 

● Goal: find a policy Q such that the long-term reward 
is maximized

hungry fulleating

aktiv

              move
marathon                   

sluggish

           sleep
Q(full,move)=3

Q(full,sleep)=1



  

Q-Learning example
● Actions A={left,right,up,down}

● States S are 25 “places”

● An immediate reward is payed                            
at field (2,3)

● Delayed Reward
● If we start at (2,1) and go down two fields to (2,3) we 

must transform the immediate reward at state (2,1) 
into a delayed reward to “remember” which way we 
have to go when starting from (2,1) the next time

X



  

Q-Learning example

● Find a Q(S,A) such that the reward is maximized
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Q-Learning example

● Use Qlearning.m example from the Material 
Section to see the Q(S,A) crowding

● In each iteration the algorithm updates the Q-
Value for each action in each state
● This can be intepreted                                            

as the robot can “try”                                               
all possible actions                                                  
in all possible states 1 2 3 4 5 6
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Q-Learning Algorithm

● Update formula using a discount factor 0≤γ≤1

● For all states and all actions, update the 
formula until no values change any more

● Use the Policy Q to execute the optimal action 
a

t
 given the actual State s

t

Q st , a t=r t1⋅maxa∈AQ st1 , a

The maximal reward we can 
expect in the new State

t+1
 

The reward that awaits us after 
Action a

t
 was executed in s

t

The expected benefit if Action a
t
 

would be executed in State s
t



  

Extension of Standard Q-Learning

● Needs to discretize the world (into state) and its 
manipulations (into actions)
● Solution: Q-Learning with continuous states and 

actions

● The Table Q(S,A) can have many entries and 
could become a mess
● Use a function that                             

“approximates” Q(S,A)
– e.g. A neural net

http://elsy.gdan.pl/images/stories/how_works/idea.jpg



  

Q-Learning Framework

● Example in QLearning folder of Materials.zip
● Try qApollo.jar to see a robot learning to fly a 

landing capsule with                   reinforcement 
learning

● For this domain it is a                                         
good choice to use a                                      
simulator to make the                                           
first steps!
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