Reinforcement Learning

Pavlocs experiments on conditioning

- Operational conditioning
- Pavlov reinforced the connection between salvation and ringing a bell using a food stimulus
- At the end the dog drooled just on ringing the bell without being exposed to any food

http://api.ning.com/files/YwzKAeVaunUlhGHXAAMUzA*L4WUBommkdp6pOLnWq0s_/ag eofthesage.org.gif

Q-learning

- A reinforcement learning variant
- Does not require a world model to exist
- Requires only direct feedback from the environment after an action was executed

Reward I

- Immediate reward
- the reward (positive or negative) is the "feed back" directly after the action was executed
- Is optimal for learning as you immediately know if your action was a good or bad
- Domains with immediate rewards are rare since actions take time to affect the environment

Reward II

- Delayed reward
- A reward that is undisclosed to you only after a sequence of actions
- This kind of reward is delayed such that you never know which of your actions was good or bad

Terms and Definitions

- State: is the actual state s_{t} of the agent
- Action: a potential action a that brings the agent into a new state $\mathrm{s}_{\mathrm{t}+1}$
- Reward: is received in state $\mathrm{s}_{\mathrm{t}+1}$ after Action a was applied

Terms and Definitions

- Policy Q is a mapping from states to actions $Q(s, a)$
- Q stores the expected reward after Action a is applied in State s

- Goal: find a policy Q such that the long-term reward is maximized

Q-Learning example

- Actions A=\{left,right,up,down\}
- States S are 25 "places"
- An immediate reward is payed

- Delayed Reward
- If we start at $(2,1)$ and go down two fields to $(2,3)$ we must transform the immediate reward at state $(2,1)$ into a delayed reward to "remember" which way we have to go when starting from $(2,1)$ the next time

Q-Learning example

- Find a $Q(S, A)$ such that the reward is maximized

Actions	$Q(\mathrm{~s}, \mathrm{a})$
left	
right	
up	
down	

Actions	$Q(\mathrm{~s}, \mathrm{a})$
left	
right	
up	
down	

Actions	$Q(\mathrm{~s}, \mathrm{a})$
left	
right	
up	
down	

Which entry should be highest (which action should be preferred) to reach $(2,3)$?

Q-Learning example

- Use Qlearning.m example from the Material Section to see the $Q(S, A)$ crowding
- In each iteration the algorithm updates the QValue for each action in each state
- This can be intepreted as the robot can "try" all possible actions in all possible states

Q-Learning Algorithm

- Update formula using a discount factor $0 \leq \gamma \leq 1$

The expected benefit if Action a_{t} would be executed in State s_{t} The maximal reward we can expect in the new State $_{\mathrm{t}+1}$

The reward that awaits us after
Action a_{t} was executed in s_{t}

- For all states and all actions, update the formula until no values change any more
- Use the Policy Q to execute the optimal action a_{t} given the actual State s_{t}

Extension of Standard Q-Learning

- Needs to discretize the world (into state) and its manipulations (into actions)
- Solution: Q-Learning with continuous states and actions
- The Table $Q(S, A)$ can have many entries and could become a mess
- Use a function that "approximates" Q(S,A)
- e.g. A neural net

Q-Learning Framework

- Example in QLearning folder of Materials.zip
- Try qApollo.jar to see a robot learning to fly a landing capsule with learning
- For this domain it is a good choice to use a simulator to make the first steps!

