

Evolution of Soft-Ware

The power of evolution
● Create machines that solve problems by means

of evolution
● Evolution creates a wide richness of solutions
● Machines can adapt to changing environments

● Adaptation and richness of solutions is
important for
● Data analysis of company and customer data
● Finding creative solutions in optimization tasks

– Optimal usage of resources
– Maximizing the income

Terms
● Microscopic

● Each gene encodes a trait (color of eyes)
– The possible values of a trait are alleles (blue, brown)

● Chromosomes consists of genes (blocks)
– Here: one individual is one chromosome as each individual

has only one chromosome
● Genome - All Genes taken together
● DNA consists of Chromosomes (an organism model)

● Macroscopic
● Individual – a phenotype expression or instantiation

according to the genotype model
● Population – all individuals

History
● Theory of Transmutation Lamark (1809)
● Selection of the fittest, On the Origin of Species

Charles Darwin (1859) and Alfred Russel
Wallace

● Genetics and Mendel's Law Gregor Mendel
(posthumed after 1884)

● Evolutionary Computing by I. Rechenberg
(1960)

● Genetic Algorithms John Holland (1975)
● Genetic programming from John Koza (1992)

Encoding the problem
● Depends on the domain
● Is the toughest decision you have

to take
● Influences the conversion speed and quality of

solution
● Example

● Allocation of cars to
managers

http://w
w

w.m
arle rblog.com

/D
N

A
- genetic-fingerpr inting-on-

fingerprint-blue-b ackdrop-1-A
JH

D
%

281%
29.jpg

One individual=
One chromosome

http://www.dapino.nl/images/MiniCarIcons_all.jpg

Gruber

Mayer

Zitsche

Coding Another
individual

Genes
● Value encoding {'red','green','blue'}
● Real numbers {3.12, 3.34, 6.234}
● Binary Strings {10101000101110}
● Permutation {1 4 6 2 7 3 4 9 8}

● Only unique numbers, require special consistency
checkers

● additional checks required

Valid models

Invalid models

Model Space

● Models can “leave” the valid
model space
● Operators may create “invalid”

individuals

http://dvice .com
/pics/g arm

in_car_ icons.jpg
/w

w
w.dapin o.nl/im

age s/M
iniC

arIc ons_all.jpg

Learning algorithm
● Decide which individuals / chromosomes have

the highest fitness (least error) to a given world
● Those individuals can recombinate and form

The Population
at evolution t

Select the
“best” individuals

asexual and
sexual reproduction

x =

Fitness function

f () N

● Domain specific
● Used to compare the chromosomes and

separate out-performers from under-performers
● Is related the the error-function

● Chromosomes must maximize the fitness function

Non-selected individuals
● Use a selection function that is based on the

individuals fitness
● As mostly the best fit organisms survive (Darwin)

● The least performant individuals are replaced by
● randomly generated candidates

x● An offspring of two well-performers
● An identical copy of a well

performer

Selection
● Tournament selection

● Select n individuals with uniform
probability and let them compete with
each other (the fittest enters the new
generation)

● Roulette wheel
● Select individuals with respect to fitness

(areas on a roulette wheel increases
with fitness)

● A individual with 99% fitness is almost
always selected

Competition in
Subgroups

Roulette wheel

Selection
● Rank selection

● Probability is a function of rank
position (not prone to outperformers
as in Roulette whele selection)

● Truncation selection
● Selecting the first half or third of the

best individuals

Ranking

Truncation

Selection
● Steady State selection

● Take only some very tough individuals
and replace only few low-performers

● Elitism
● Always save the best individual for

the next population (strongly
recommended to be used)

Steady State

Elitism

Mutation (unary operation)
● Mutations rate should be low (0.5% - 1%)
● Used for graduate changes exploring the

search space
● Keep non-mutated information intact
● Changes are totally random

● Usually is applied after reproduction to simulate
transcription errors

Cross Over (binary operation)
● The hope is the two normal performers are

combined to a best-performer
● Crossover probability

● 0% = just copy the parents
● 100% = use crossover for each offspring
● Recommended: 60%-95%

● Single point crossover

Crossover
● Two point crossover
● Uniform crossover
● Arithmetic crossover

● Mathematical functions applied (binary strings)


1
0
0
1
1
1
0
 

1
0
1
0
1
0
0
x = 

1
0
0
0
1
0
0


e.g. AND

Example
● Domain: Tangram-Example

● Each objects can be translated, rotated, scaled
● Task: arrange all objects on the desk such that the

desk is almost completely covered by the objects

Geometric Objects

Desk

Encoding for Tangram-Domain
● One Gene

● G={x,y,scale,rot}
● One individual

● I={G;G;G;G} (for 4 geometric objects)
● The Population

● P={I;I;I;I;I;I;I;I;....;I}
● Fitness function

● Count the desk's hidden pixels

Practise
● Use the Tangram.jar Demo

● Note the order of the individu-
als from best to worst and see
geometric representation

● Watch what happens after one
evolution (Turnament
Selection+Elitism+Mutation)

● A productive version is used to
lay out electronic circuits as
good as a human experts can
do

Searching the model space

fit
ne

ss

Model Space Model Space

Step i Step j>i
G

ra
di

en
t a

sc
en

t
fit

ne
ss

Model Space Model Space

G
en

et
ic

 a
lg

or
ith

m

grad

grad
x

St
uc

k
to

 lo
ca

l o
pt

im
a

Missing local optima

GA advantages
● In domains with many “step-like” dimensions

● dimension-specific gradient descent does'nt work or
is too slow

● As each organism is independent of others GA
is suited for arallel processing in a cloud

● No specific criteria needed for the fitness
function
● Can be everything

GA Problems

● GA is is competitive to other algorithms only
with good encoding
● can reduce the processing time dramatically

● The search in the model space is not “directed”
using a gradient, its just random -> slow
convergence

– (make a random walk and show how long it takes to get
into the optimum)

● What is the difference to brute force?

Genetic programming
● Programs are encoded in

Genes using a tree
● evolutionary operators are

applied
● Very non-intuitive

programs are created
● Problematic is the

“porous” search space
● More invalid solutions than

valid ones

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

