

Artificial Neural Nets

● Preparation
● Functional equations
● Geometrical equations

– Parametric equations
– Hessian normal form

● Perceptron
● Neural Nets of Perceptrons
● Learning of weights
● How neural learning works

Connectionistic Neuron=Perceptron

● Perceptron

● Input s
i

● Weights w
i

● Net-Input
● activation

Input

s
1

s
2

s
3

w
1

w
2

w
3

Activation

net=∑i
 si⋅wi

f act net 

Net-Input

Connectionistic Nets

● Layered nets
● No loops inside layer
● Clear direction of updates

● Dynamic nets
● Loops inside net
● No clear update direction
● Activation can explode!

Hidden
Layer 1

Hidden
Layer 2

Hidden
Layer 3

Input
Layer

Output
Layer

Hidden Net

Input
Layer

Output
Layer

Difference to biology

● Clocked update (no spike trains)
● Not in parallel (in ordinary computers)
● Only one type of neuron/receptor
● No habituation
● Most connectionistic systems are stable in

structure, only flexible in input/output/Weights

A problem artificial NN can solve

● Supervised learning
● Domain: Reputation of customers for a loan

● Attributes
– Income (Attribute 1)
– Place of living (Attribute 2)

● Prediction of ordinal
attribute (class is given)
● Pay loan back (green)
● Did not pay credit back (blue)

● Task: find a model that can sort green from blue
Attribute 1

A
ttr

ib
u

te
 2

Input Data Space

The model

● A geometrical model
● A straight line separating the input space

Attribute 1

A
tt

rib
u

te
 2

Input Data Space

n0

dist
0

● Hessian normal form

– Normal vector n
0

– Distance to origin
● Here I calculate the

normal vector from
angle

r⋅n0=dist 0

Linear separation of input space

● How prediction works
● Plane defined as

● Predicted class:

Attribute 1
A

tt
rib

ut
e

2

Input Data Space

n0

dist
0

1

2

3
5

4

r⋅n0=dist 0

r1⋅n0dist0

r1⋅n0≥dist0

class
1

class
2

if

if

r1=attribute1,attribute2

Sample 1 represented by

Graphical Interpretation of weights

Weights n are in range (-1,+1) with length(n)=1

Input

r
x

r
y

-1

n
x

n
y

dist
0

Activation

net=r⋅n−dist 0

f act net 

Net-Input

net-Input 10

=step-Functionf act

class
0

class
1

Attribute 1

A
tt

rib
u

te
 2

Input Data Space

n⃗
dist

0

1

Practise

● Load the Material.zip for this lecture
● data=generateData;
● showData(data,alpha,dist)

● Alpha is the angle in RAD in [-pi/2 .. +pi/2] for
● dist is the distance from the origin
● Show two classes in colors blue and green
● Correctly classified samples as point „.“ missed

samples as circle „o“

● gradientDescent(data,0.01,-pi/4,2)
● Starts a gradient Descent learning process

n0

alpha

dist0

error

Gradient Descent (delta rule)

● Model space -> error visualization

● gradientDescent(data,stepSize,alpha,dist0)
● StepSize=0.01, alpha=-pi/4, dist0=2

Limits of the one-perceptron model
● Inspect the uglyData.mat

● The perceptron model can
separate the green from the
blue class

● The perceptron model is not
able to separate the input
space linearly with the given
data

Attribute 1

A
tt

rib
ut

e
2

Model Not working

Attribute 1

A
tt

rib
ut

e
2

Model ok

Correctly classified

Not correctly
classfied

Correctly
classified

Correctly
classified

Not correctly
classfied

Correctly
classified

Solution: use two perceptrons

● Backpropagatoin is used to learn the weights
● Is a gradient descent subType

act
1

act
2

act
3

r
2

w
3

w
4

Attribute 1

A
tt

ri
b

ut
e

 2

r
1

Backpropagation

● Only for layered nets, a variant of gradient
descent

● Learning requires supervised data
● Phases
● Compute output for

a sample
● Compute the error
● Propagate the error

backwards and adjust weights

Output
Layer

act
1

act
2

act
3i

w
1

w
2

w
3

w
4

out

Hidden
Layer

Backpropagation

● What we know
● Input: sample (attribute,class)
● Error
● Activity

● Compute the gradient using the chain rule
 for output layer for hidden layer

act
1

act
2

act
3i

w
1

w
2

w
3

w
4

Activation function is identity! act
i
=net

i
e=

1
2
class−net 3

2

net 3=w3⋅net 1w4⋅net 2

net 1=w1⋅i

net 2=w2⋅i

d e
d w3

=class−net3⋅−net 1
d e
d w1

=class−net3⋅−w3⋅i

d e
d wi

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

