Artificial Neural Nets

- Preparation
- Functional equations
- Geometrical equations
- Parametric equations
- Hessian normal form
- Perceptron
- Neural Nets of Perceptrons
- Learning of weights
- How neural learning works

Connectionistic Neuron=Perceptron

- Perceptron
- Input s_{i}
- Weights w_{i}
- Net-Input
- activation

Connectionistic Nets

- Layered nets
- No loops inside layer
- Clear direction of updates

- Dynamic nets
- Loops inside net
- No clear update direction
- Activation can explode!

Difference to biology

- Clocked update (no spike trains)
- Not in parallel (in ordinary computers)
- Only one type of neuron/receptor
- No habituation
- Most connectionistic systems are stable in structure, only flexible in input/output/Weights

A problem artificial NN can solve

- Supervised learning
- Domain: Reputation of customers for a loan
- Attributes
- Income (Attribute 1)
- Place of living (Attribute 2)
- Prediction of ordinal attribute (class is given)
- Pay loan back (green)
- Did not pay credit back (blue)

- Task: find a model that can sort green from blue

The model

- A geometrical model
- A straight line separating the input space
- Hessian normal form

$$
\vec{r} \cdot \vec{n}_{0}=\operatorname{dist}_{0}
$$

- Normal vector n_{0}
- Distance to origin
- Here I calculate the normal vector from angle

Linear separation of input space

- How prediction works
- Plane defined as

$$
\vec{r} \cdot \vec{n}_{0}=d i s t_{0}
$$

- Predicted class:

$$
\left\{\begin{array}{l}
\text { class }_{1} \text { if } \vec{r}_{1} \cdot \vec{n}_{0}<\text { dist }_{0} \frac{\text { 骨 }}{4} \\
\text { class }_{2} \text { if } \vec{r}_{1} \cdot \vec{n}_{0} \geq \text { dist }_{0}
\end{array}\right.
$$

Input Data Space

(4)
(5)

Sample 1 represented by
$\vec{r}_{1}=\left(\right.$ attribute $_{1}$, attribute $\left._{2}\right)$

Graphical Interpretation of weights

Weights n are in range $(-1,+1)$ with length $(\mathrm{n})=1$

Practise

- Load the Material.zip for this lecture
- data=generateData;
- showData(data,alpha,dist)
- Alpha is the angle in RAD in [-pi/2 .. +pi/2] for $\left(\overrightarrow{n_{0}}\right)$
- dist is the distance from the origin
- Show two classes in colors blue and green
- Correctly classified samples as point „." missed samples as circle „o"
- gradientDescent(data,0.01,-pi/4,2)
- Starts a gradient Descent learning process

Gradient Descent (delta rule)

- Model space -> error visualization

- gradientDescent(data,stepSize,alpha,dist0)
- StepSize=0.01, alpha=-pi/4, dist0=2

Limits of the one-perceptron model

- Inspect the uglyData.mat
- The perceptron model can separate the green from the blue class

- The perceptron model is not able to separate the input space linearly with the given data

Solution: use two perceptrons

- Backpropagatoin is used to learn the weights
- Is a gradient descent subType

Backpropagation

- Only for layered nets, a variant of gradient descent
- Learning requires supervised data
- Phases
- Compute output for a sample
- Compute the error
- Propagate the error Hidden Output
Layer Layer backwards and adjust weights

Backpropagation

- What we know

- Input: sample (attribute,class)
- Error $\quad e=\frac{1}{2}\left(\text { class }-n e t_{3}\right)^{2} \quad$ Activation function is identity! act $_{i}=$ net $_{i}$
- Activity $n e t_{1}=w_{1} \cdot i$

$$
\begin{aligned}
& \text { net }_{2}=w_{2} \cdot i \\
& \text { net }_{3}=w_{3} \cdot \text { net }_{1}+w_{4} \cdot \text { net }_{2}
\end{aligned}
$$

- Compute the gradient $\frac{d e}{d w_{i}}$ using the chain rule for output layer

$$
\frac{d e}{d w_{3}}=\left(\text { class }- \text { net }_{3}\right) \cdot\left(- \text { net }_{1}\right) \quad \frac{d e}{d w_{1}}=\left(\text { class }-n e t_{3}\right) \cdot\left(-w_{3}\right) \cdot i
$$

for hidden layer

