Artificial Neural Nets

Preparation

* Functional equations
 Geometrical equations

- Parametric equations
- Hessian normal form

Perceptron
Neural Nets of Perceptrons
_earning of weights

How neural learning works

Connectionistic Neuron=Perceptron

Perceptron Input Net-Input Activation

AN N N
NS N h

Inputsi p
W1
Weights w @\"ﬁtz (5, w)

Net-Input @_> (net)

activation
@/

Connectionistic Nets

Hidden Hidden Hidden
Layer1 Layer2 Layer3

* Layered nets Q/

* No loops inside layer
e Clear direction of updates

Input Output
Layer Layer

Hidden Net

 Dynamic nets

e Loops inside net
. . Output
« No clear update direction Layer

Input

« Activation can explode! Layer

Difference to biology

Clocked update (no spike trains)

Not in parallel (in ordinary computers)
Only one type of neuron/receptor

No habituation

Most connectionistic systems are stable in
structure, only flexible in input/output/Weights

A problem artificial NN can solve

» Supervised learning
 Domain: Reputation of customers for a loan

o Attributes A Input Data Space
~ Income (Attribute 1) @
- Place of living (Attribute 2) o ©
» Prediction of ordinal : @ © O
attribute (class is given) §: o © °
» Pay loan back (green) o > o
» Did not pay credit back (blue) Attribute 1 >

» Task: find a model that can sort green from blue

The model

* A geometrical model

» A straight line separating the input space

e Hessian normal form

r-n,=dist,
— Normal vector n,

- Distance to origin

e Here | calculate the
normal vector from
angle

A

Attribute 2

>
*
*
*
0. -
*
*
*
*
*
*
*

Input Data Space

Attribute 1

Linear separation of input space

« How prediction works A Input Data Space

 Plane defined as
r-n,=dist,
 Predicted class:

class, if 7 -7 <dist
1 0 0 0
L dist_

class, if ry = dist

Attribute 2

Attribute 1

Sample 1 represented by

7, =(attribute, attribute,)

Graphical Interpretation of weights

Input Net-Input Activation
- o Y Y / \
n A Input Data Space
net=(7r-n)—dist, \
n
@ y ><> Sarlnet) o N L
2
2
dist, <
Attibute 1~

A f act =step-Function
class,

classO | | | |

A ——

net-Input

Weights n are in range (-1,+1) with length(n)=1

Practise

e Load the Material.zip for this lecture
» data=generateData,;

 showData(data,alpha,dist) R
+ Alpha is the angle in RAD in [-pi/2 .. +pi/2] for (71,))
o dist is the distance from the origin

« Show two classes in colors blue and green

e Correctly classified samples as point ,.." missed
samples as circle ,,0"

» gradientDescent(data,0.01,-pi/4,2)

« Starts a gradient Descent learning process

Gradient Descent (delta rule)

 Model space -> error visualization

error

. gradientDescent(data,stepSize,alpha,dist0)
o StepSize=0.01, alpha=-pi/4, dist0=2

Limits of the one-perceptron model

* |Inspect the uglyData.mat

* The perceptron model can
separate the green from the
blue class

* The perceptron model is not
able to separate the input
space linearly with the given
data

Attribute 2

/ >

Model ok

@ Correctly classified

Correctly
classified

Correctly
classified .

Correctly
classified .

Attribute 1 \>

N Model Not working

Attribute 2 /

O ’ Not correctly
classfied
. Not correctly

classfied
>

Attribute 1

Solution: use two perceptrons

Attribute 1

 Backpropagatoin is used to learn the weights
* |s a gradient descent subType

Backpropagation

* Only for layered nets, a variant of gradient
descent

* | earning requires supervised data

Hidden Output
Layer Layer

* Phases

 Compute output for
a sample

 Compute the error

* Propagate the error
backwards and adjust weights

Backpropagation

1 3
W W

2 4

 \What we know

* |nput: sample (attribute,class)

1

_ 2
e Error 8—5 (class—net3) Activation function is identity! act=net

* Activity net,=w,1I
net,=w,-i

net,=wsy-net,+w,-net,

» Compute the gradient ;—Vi using the chain rule

for output layer for hidden layer

de =(class—net,)-(—net,) a’dvil

I =(class—net,)-(—w,)-i

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

