
  

Artificial Neural Nets

● Preparation
● Functional equations
● Geometrical equations

– Parametric equations
– Hessian normal form

● Perceptron
● Neural Nets of Perceptrons
● Learning of weights
● How neural learning works



  

Connectionistic Neuron=Perceptron

● Perceptron

● Input s
i

● Weights w
i

● Net-Input
● activation
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Connectionistic Nets

● Layered nets
● No loops inside layer
● Clear direction of updates

● Dynamic nets
● Loops inside net
● No clear update direction
● Activation can explode!
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Difference to biology

● Clocked update (no spike trains)
● Not in parallel (in ordinary computers)
● Only one type of neuron/receptor
● No habituation
● Most connectionistic systems are stable in 

structure, only flexible in input/output/Weights



  

A problem artificial NN can solve

● Supervised learning
● Domain: Reputation of customers for a loan

● Attributes
– Income (Attribute 1)
– Place of living (Attribute 2)

● Prediction of ordinal                                
attribute (class is given)
● Pay loan back (green)
● Did not pay credit back (blue)

● Task: find a model that can sort green from blue
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The model

● A geometrical model
● A straight line separating the input space
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● Hessian normal form

– Normal vector n
0

– Distance to origin
● Here I calculate the 

normal vector from 
angle
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Linear separation of input space

● How prediction works
● Plane defined as

● Predicted class:
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Graphical Interpretation of weights

Weights n are in range (-1,+1) with length(n)=1
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Practise

● Load the Material.zip for this lecture
● data=generateData;
● showData(data,alpha,dist)

● Alpha is the angle in RAD in [-pi/2 .. +pi/2] for  
● dist is the distance from the origin
● Show two classes in colors blue and green
● Correctly classified samples as point „.“ missed 

samples as circle „o“

● gradientDescent(data,0.01,-pi/4,2)
● Starts a gradient Descent learning process

n0



  

alpha

dist0

error

Gradient Descent (delta rule)

● Model space -> error visualization

● gradientDescent(data,stepSize,alpha,dist0)
● StepSize=0.01, alpha=-pi/4, dist0=2



  

Limits of the one-perceptron model
● Inspect the uglyData.mat

● The perceptron model can 
separate the green from the 
blue class

● The perceptron model is not 
able to separate the input 
space linearly with the given 
data
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Solution: use two perceptrons

● Backpropagatoin is used to learn the weights
● Is a gradient descent subType
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Backpropagation

● Only for layered nets, a variant of gradient 
descent

● Learning requires supervised data
● Phases
● Compute output for                                            

a sample
● Compute the error
● Propagate the error                             

backwards and adjust weights
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Backpropagation

● What we know
● Input: sample (attribute,class)
● Error
● Activity

● Compute the gradient          using the chain rule
            for output layer                            for hidden layer
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