Recurrent Nets and their functions (Pen \& Paper)

Fig. 1 shows two different recurrent neural networks. Which characteristic mathematical functions does these networks represent. Draw the activation of neuron 2_{2} (in A) and neuron ${ }_{1}$ (in B) as a function of the iteration (after 5-7 iterations you may be able to recognize the mathematical function). The initial output of all neurons (at iteration 0) is 0 . The activation function is the identity $f_{\text {act }}(n e t)=$ net. (All neurons of the net are updating their outputs within one iteration cycle).

Fig. 1

Neural Networks in life-forms (computation)

The simple network shown in Fig. 3 produces a complex function. The activation of both neurons is initialized with 0 (at iteration=0). The activation function of Neuron $_{1}$ is the identity function $f_{\text {act }}($ net $)=$ net and the activation function of Neuron $_{2}$ is the identity function that is cut to zero at a net-Input of >90 (see Fig. 3 right).
Implement the given neural net in Matlab / Java or any other language and draw the net's output (the activation of Neuron ${ }_{2}$) for at least 1000 iterations. Describe the output. Which role may such an output function have in life-forms.

Neural Net

Act-Function Neuron ${ }_{2}$

Fig. 3

Data Input Space linear separation (pen \& paper)

Use the hessian normal form to find a neuron that successfully separates the given data input space into the groups of white and black classified samples.

